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New Compstatin Variants through Two De Novo Protein Design Frameworks
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ABSTRACT Two de novo protein design frameworks are applied to the discovery of new compstatin variants. One is based on
sequence selection and fold specificity, whereas the other approach is based on sequence selection and approximate binding
affinity calculations. The proposed frameworks were applied to a complex of C3c with compstatin variant E1 and new variants
with improved binding affinities are predicted and experimentally validated. The computational studies elucidated key positions in
the sequence of compstatin that greatly affect the binding affinity. Positions 4 and 13 were found to favor Trp, whereas positions
1, 9, and 10 are dominated by Asn, and position 11 consists mainly of Gln. A structural analysis of the C3c-bound peptide analogs
is presented.
INTRODUCTION
Compstatin is a synthetic 13-residue cyclic peptide that

inhibits the cleavage of C3 to C3a and C3b in the human

complement system and thus hinders complement activation.

It is cyclized by a disulfide bond between Cys2 and Cys12.

Compstatin is a novel drug candidate identified through the

screening of a phage-displayed random peptide library

with C3b, a proteolytically activated form of complement

C3, and was later truncated to its present 13-residue form

without loss of activity (1). Although complement activation

is part of normal inflammatory response, inappropriate

complement activation can cause host-cell damage, which

is the case in>25 pathological conditions, including autoim-

mune diseases, stroke, heart attack, Alzheimer’s disease, and

burn injuries (2). Compstatin has shown highly promising

results in numerous clinically relevant trials (1,3–10).

De novo design of compstatin variants aims at acquiring the

sequences corresponding to the best inhibitors to C3 and thus

the most potent drugs for diseases related to inappropriate

complement activation (11–15). Recent review articles on

de novo protein design present the advances and challenges

(16,17). Morikis et al. (13) studied compstatin sequences

using rational design, experimental combinatorial design,

and computational combinatorial design. A number of comp-

statin variants with known experimental relative activities

are presented in Table S1 in the Supporting Material. The

activities are relative to the native compstatin sequence.

The rational design of compstatin yielded an analog with

a fourfold higher activity than the native compstatin (18).

Using experimental combinatorial design, another compsta-

tin analog with fourfold increased activity was found

(peptide No. 6). In this design, the hydrophobic cluster and

the b-turn were kept, with the novel introduction of Trp at

position 9 (19). The introduction of this second Trp suggests

that Trp ring stacking may be important for the compstatin
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activity. The computational combinatorial design of comp-

statin gave several analogs of compstatin with higher activity

than the native (11). These included peptides with an 11-fold

and 16-fold higher activity (peptides No. 7 and No. 8, respec-

tively) along with an extremely potent analog with 45-fold

higher activity (peptide No. 9, from here on referred to as

variant E1) (20). The computational design identified

another position (position 4) where an aromatic ring could

be placed to enhance ring stacking and activity. In this

case, Tyr was present in position 4 with Trp present in posi-

tion 7. In addition, Mallik et al. (20) studied compstatin

analogs with nonnatural amino acids.
METHODS

Design template

The crystal structure of compstatin variant E1 in complex with complement

component C3c, recently elucidated by Janssen et al. (21) (Protein DataBank

(PDB) code: 2QKI), was used as the design template. They performed the

work on C3c instead of the whole C3 protein itself because C3c crystals

are easier to obtain and they diffract at a higher resolution than those of

C3. The structure of C3c complexed with the compstatin variant E1 is shown

in Fig. S1 in the Supporting Material.

As revealed by the structure, the binding site of the compstatin variant on

C3c is at macroglobulin domains 4 and 5. Because this is not confirmed as

the actual binding site of the compstatin variant E1 on C3, we only employ

the structure of the compstatin variant E1 in the C3c-compstatin complex as

the design backbone template for our de novo design of the inhibitor (see

Fig. 1). We believe this is the best model for C3-compstatin variant E1 inter-

action we can obtain thus far in the open literature. Both chains G and H

correspond to the compstatin variant E1 in the PDB file of the structure of

C3c-compstatin E1 complex. As we found that both chains are highly struc-

turally similar with an atom-to-atom root mean-square deviation of 0.405 Å,

we only used chain G as the template for designing new compstatin variants.

In addition, the free compstatin structure was used (PDB code: 1A1P) for

comparison to the native compstatin sequence.

Mutation set

As the disulfide bridge was found to be essential for aiding the formation of

the hydrophobic cluster and prohibiting the termini from drifting apart, both
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FIGURE 1 A closeup view of the structure of compstatin variant E1

(ICVWQDWGAHRCT) in Fig. S1. It constitutes the design template for

our de novo design of the inhibitor.

FIGURE 2 Overview of the de novo design framework.
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residues Cys2 and Cys12 were maintained. In addition, because the structure

of the type-I b-turn was not found to be a sufficient condition for activity, the

turn residues were fixed to be those of the parent compstatin sequence;

namely Gln5-Asp6-Trp7-Gly8. In fact, when stronger type I b-sequences

were constructed, which was supported by nuclear magnetic resonance

(NMR) data indicating that these sequences provided higher b-turn popula-

tions than compstatin, these sequences resulted in lower or no activity (18).

For similar reasons, Val3 was maintained throughout the computational

experiments.

Based on the structural and functional characteristics of those residues

involved in the hydrophobic cluster, positions 1, 4, and 13 were allowed

to select only from the hydrophobic amino acid set (A,F,I,L,M,W,V,Y).

In addition, this set included Threonine for position 13 to allow for the selec-

tion of the wild-type residue at this position. Thr is partially hydrophobic

because it has a methyl group and partially polar because it has a hydroxyl

group. For positions 9, 10, and 11, all residues were allowed, except for

Cysteine and Tryptophan. This mutation set leads to a problem with

complexity 3.0 � 106.

De novo design based on fold specificity
calculations

We first calculated the fold specificities of compstatin variants com-

plexed with C3c using our two-stage de novo design framework

(11,12,14,22,23). A graphical overview of the design process is depicted

in Fig. 2. The first stage produces a rank-ordered list of amino acid

sequences with the lowest energies in a flexible design template by solving

an integer programming sequence selection model (11,12,14,24). The

second stage calculates the specificities of the sequences to the fold based

on the full atomistic force field either through 1), the ASTRO-FOLD

approach (25–34) and deterministic global optimization (35–41); or 2), the

AMBER force field via a novel NMR structure refinement method (16,22).

The de novo protein design framework

Stage one: sequence selection

As the design backbone template has only one structure, the basic sequence

selection model (14) was used for obtaining amino acid sequences with the

lowest energies in the fold, although Fung et al. (14) have presented other

optimization models for flexible templates with multiple protein structures.

The basic model is an integer linear programming model of the form
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Set i ¼ 1, ., n defines the number of amino acid positions along the

backbone. At each position i, there can be a set of mutations represented

by j{i} ¼ 1, ., mi, where, for the general case mi ¼ 20 c i. The equivalent

sets k h i and l h j are defined, and k > i is required to represent all unique

pairwise interactions. Binary variables yi
j and yk

l are introduced to indicate

the possible mutations at a given position. Specifically, variable yi
j will be

one if position i is occupied by amino acid j, and zero otherwise. Similarly,

variable yk
l will assume the value of one if position k is taken by amino acid

l, and the value of zero otherwise. The composition constraints in the formu-

lation require that there is exactly one type of amino acid at each position.

Energy parameters Eik
jl indicate the pairwise interaction between amino

acid j at position i and amino acid l at position k and were calculated using

the centroid-centroid force field of Rajgaria et al. (42).

Using Eq. 1, we generated 1000 low energy sequences for which we

calculated the fold specificities in stage two.

Stage two: fold specificity calculations

The method described in Fung et al. (22) was used to generate an ensemble of

several hundred conformers for each of the 1000 sequences using CYANA

2.1 (43,44) and TINKER (45). The conformers are within the upper and

lower bounds on the Ca-Ca distances and dihedral angles obtained from

the native structure. The energies of the conformers for each sequence and

the native sequence were used to calculate the fold specificity (see Supporting
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Material). A workflow of stage two, detailing the programs used and the

number of structures that are input and output in each step, is given in Fig. S2.

De novo design based on approximate binding
affinity ranking metric

The design of compstatin variants was also done using a novel de novo

design framework based on an approximate binding affinity (K*) ranking

metric. This novel de novo design framework also consists of two stages.

The first stage solves an integer programming sequence selection model

to generate a rank-ordered list of amino acid sequences with the lowest

energies (11,12,14,24). The second stage ranks the sequences based upon

approximate binding affinities. This second stage is more applicable when

the design template consists of a complex. Stage two of the novel design

framework utilizes programs from the Rosettaþþ package (47–49) for the

necessary structure and docking prediction and ensemble generation. Fig. 2

shows an overview of the novel de novo design framework.

The novel de novo protein design framework

Stage one: sequence selection

Stage one is the same as the one used in the de novo design based on fold

specificity calculations.

Stage two: approximate binding affinity calculation

A novel approach to approximating the binding affinity of protein-ligand

complexes has been introduced by Lilien et al. (50). The approximate

binding affinity, K*, is given by Eq. 2, where qPL is the partition function

of the protein-ligand complex, qP is the partition function of the free protein,

and qL is the partition function of the free ligand:

K� ¼ qPL

qPqL

: (2)

The partition functions are defined in Eq. 3, where sets B, F, and L contain

the rotamerically based conformations of the bound protein-ligand complex,

the free protein, and the free ligand, respectively. En is the energy of confor-

mation n, R is the gas constant, and T is the temperature:

qPL ¼
X
b˛B

e
�Eb
RT ; qP ¼

X
f˛F

e
�Ef
RT ; qL ¼

X
‘˛L

e
�E‘
RT : (3)

Because K* uses the Boltzmann probability distribution, it satisfies the

Ergodic hypothesis and can be proved to approximate the true binding

affinity, KA. K* will equal KA if K* is calculated using exact partition func-

tions. For an enzyme/ligand system, the true binding affinity is defined in

Eq. 4. At equilibrium, the chemical potentials mi of the complex, free protein,

and free ligand sum to zero (Eq. 5). By expressing the chemical potential in

terms of indistinguishable particles (Eq. 6) and substituting this into Eq. 5,

we obtain Eq. 7. Thus, the true binding affinity can be expressed as a ratio

of the individual species partition functions. The more accurate the partition

functions, the better KA is approximated:

KA ¼
½PL�
½P�½L�; (4)

mP þ mL � mPL ¼ 0; (5)

mi ¼ �kTln

�
qiðV; TÞ

Ni

�
; (6)

qPLðV; TÞ
qPðV; TÞqLðV; TÞ

¼ NPL

NPNL

¼ KA: (7)
Fig. S2 provides a graphical depiction of the steps needed to calculate K*

and further details can be found in the Supporting Material. First, three-

dimensional structures of each sequence are generated using RosettaAbinitio

(47,51,52). For each sequence, 1000 peptide structures are generated. The

structures are then clustered based upon their f- and j-angles using

OREO (53, P. A. DiMaggio, S. R. McAllister, C. A. Floudas, X. J. Feng,

J. D. Rabinowitz, and H. A. Rabitz, unpublished). This groups together

similar structures. An average structure from each of the 10 largest

clusters, plus the overall lowest energy structure, are selected for docking.

RosettaDock (48,55,56) is used to dock each of the 11 peptide structures to

the target protein. For each docking run, 1000 docked conformers are gener-

ated. Finally, RosettaDesign (49) is used to generate the rotamerically based

conformation ensembles using the peptide structures from RosettaAbinitio,

the complex structures from RosettaDock, and the crystal structure of the

target protein as input structures for the free peptide, complex, and free

protein ensembles, respectively. Solvation effects are incorporated implicitly

in the energy functions that are used to drive each of the modeling steps

(sequence selection, structure prediction, docking, etc.). The Rosetta

programs use the Lazaridis-Karplus solvation model (57), which is based

on a Gaussian-shaped solvent exclusion.

The free peptide ensemble consists of 22,000 total structures (set L). One-

hundred-and-ten starting structures are obtained by selecting the 10 lowest-

energy structures from each of the 10 largest clusters plus the 10 overall

lowest-energy structures obtained from RosettaAbinitio. For each starting

structure, 200 rotamer conformers are generated, giving a final ensemble

of 22,000 structures. The ensemble incorporates both backbone flexibility

(by using 110 different backbone starting structures) and rotamer flexibility

(by generating 200 rotamer conformers per starting structure).

The complex ensemble also consists of 22,000 total structures (set B).

Again, 110 starting structures are used, this time by selecting the 10 lowest-

energy docked conformers from the 11 docking runs per sequence. Two-

hundred rotamer conformers are generated per starting structure. Flexibility

is taken into account by the various peptide backbone structures used (11

different backbones total), the various docked conformations (10 per peptide

backbone), and the rotamer conformers for each starting structure.

The free protein ensemble consists of only 2000 total structures (set F).

Because the target protein is so large (>1000 residues), it is computationally

infeasible to predict backbone structures. Therefore, the crystal structure of

the protein is used as the only starting structure and 2000 rotamer conforma-

tions are generated.

For the stage two calculations, we are not attempting to compare our pre-

dicted K* values with actual experimental binding affinities, but instead are

using it as a ranking metric to sort the sequences from stage one to elucidate

better binders. In fact, it is difficult to precisely compare the values of K* to

experimental binding affinities because K* is unitless. The partition func-

tions themselves are unitless.

RESULTS

Results for both stage one (run 1) and the top 10 sequences

with the highest fold specificities from stage two are shown

in Table S2 and Table 1, respectively.

The following suggested mutations versus the native

sequence of compstatin are observed from the sequences pre-

dicted based on fold specificities: I1(V/L/I), V4W, H9(Q/R),

H10(M/N/V/R), R11(R/N), and T13W. The preference of

Trp at positions 4 and 13 is dominant. Notice that the Trp

at position 4 is already present on compstatin variant E1,

which corresponds to 45-fold improvement in potency

over the native compstatin (20). As for position 13, a muta-

tion to Val was experimentally validated to be preferred

(11,46), whereas a more hydrophobic amino acid of Trp

might lead to even higher potency. The suggested mutations
Biophysical Journal 98(10) 2337–2346



TABLE 1 Top 10 sequences from stage one with the highest fold specificities (Run 1)

Sequence

Sequence selection

rank

Fold specificity

rank

Approximate binding

affinity rank

Position

K* 1 2 3 4 5 6 7 8 9 10 11 12 13

NCV-2 756 2 1 4.31 � 10�02 I C V W Q D W G R N N C W

NCV-10 809 10 2 3.30 � 10�02 V C V W Q D W G R V N C W

NCV-3 392 3 3 3.83 � 10�04 L C V W Q D W G Q M R C W

Variant E1 n/a n/a 4 5.78 � 10�06 I C V W Q D W G A H R C T

NCV-5 684 5 5 4.10 � 10�07 W C V W Q D W G R N N C W

NCV-1 833 1 6 3.55 � 10�07 V C V W Q D W G Q M R C W

NCV-8 867 8 7 9.69 � 10�08 I C V W Q D W G Q I R C W

NCV-7 671 7 8 6.26 � 10�09 F C V W Q D W G Q M R C W

NCV-4 659 4 9 3.51 � 10�10 I C V W Q D W G Q V R C W

NCV-9 343 9 10 8.01 � 10�11 I C V W Q D W G Q R N C W

NCV-6 539 6 11 6.88 � 10�11 L C V W Q D W G Q R N C W

Native n/a n/a 12 4.27 � 10�12 I C V V Q D W G H H R C T

Mutations are indicated in boldface.
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of H9(Q/R) and H10(M/N/V/R) have not been experimen-

tally tested. For positions 1 and 11, the fold specificity results

suggest it might be favorable to keep the native residues.

Before using the sequences generated from stage one, stage

two of the novel design framework was tested on sequences

from the previous designs of compstatin (Table S1). The

goal was to predict, correctly, whether the compstatin variant

binds better or worse than the native. For all partition function

calculations, the sets B and L consisted of 22,000 configura-

tions, and the set F consisted of 2000 configurations.

The approximate binding affinity model is successful

because it provides theoretical predictions on binding, which

have been experimentally validated using surface plasmon

resonance (SPR) binding studies. Although the theoretical

algorithm ranks the predicted analogs with respect to the

native peptide, this ranking is only approximate and depends

on the theoretical details and parameterization of the algo-

rithm and the calculation setup. In addition, the theoretical

predictions are based on binding of compstatin analogs to

C3c, whereas the SPR studies are performed with the whole

C3. Thus, the success of the algorithm lays in its ability to

predict any new sequences with binding abilities. Further

optimization of the predicted sequences by incorporating

nonnatural amino acids (20) is expected to increase binding

affinities.

Of the sequences in Table S1, peptide Nos. 6, 7, 8, and 9

were correctly predicted to be better binders than the native,

and peptide Nos. 2 and 4 were correctly predicted to be

worse binders than the native. Peptide Nos. 1 and 3 were

incorrectly predicted to be better binders than the native.

There could be two reasons for this discrepancy. One is

that the experimental relative activity is based upon IC50

data. IC50 is a measure of the concentration of the peptide

required to obtain 50% inhibition of the target protein.

This is not the same as binding affinity, although the two

are related. The relationship between binding affinity and

IC50 also depends upon the concentration of the substrate

or ligand and the Hill coefficient. There can be cases where

a ligand has a higher binding affinity (or lower KD, inverse of
Biophysical Journal 98(10) 2337–2346
binding affinity), but a higher IC50 when compared to

another ligand (58). Furthermore, the computational predic-

tions and SPR data are on binary systems, whereas any

immunological assay, in vitro or in vivo, are on nonbinary

systems, involving inhibitions of pathways or reactions.

Therefore, we cannot expect the data from binary systems

to correlate exactly with data from nonbinary systems. The

second reason for the discrepancy is that the rotamer

sampling is simply not high enough. If the rotamer space

could be perfectly sampled, the prediction of K* would be

exact. This, however, is computationally demanding. Our

method is also limited by the accuracy of the energy

functions used in the various Rosetta programs. Although

these are some of the best protein prediction and docking

methods available, any inherent limitations translate into

our calculations.

Looking closer at the sequences in Table S1, variant E1

has two mutations compared to the native (i.e., V4W and

H9A), and exhibits a 45-fold higher potency than the native

compstatin (20). The sequences proposed by Klepeis et al.

(11,12) show up to a 16-fold improvement in activity over

the native compstatin. Peptide No. 7 has three mutations

(i.e., V4Y, H9F, and T13V), whereas peptide No. 8 has

two mutations (i.e., V4Y and H9A) compared to the native

sequence. It is important to emphasize that the key common

element is the presence of a hydrophobic and aromatic amino

acid in position 4.

Approximate binding affinities of high-fold specificity

sequences were calculated to compare the ranking based

upon fold specificity and the ranking based upon approxi-

mate binding affinities. Table 1 shows the K* results. In

comparing the two ranking metrics, we find no correlation,

yet the sequences with high fold specificities are all predicted

to be better binders than the native sequence. All of the de-

signed sequences exhibit a higher binding affinity than the

native, and three of them, variants NCV-2, NCV-10, and

NCV-3 have higher approximate binding affinities than

variant E1. Variant NCV-2 has five mutations (V4W,

H9R, H10N, R11N, and T13W). Variant NCV-10 has six
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mutations (I1V, V4W, H9R, H10V, R11N, and T13W).

Variant NCV-3 has five mutations (I1L, V4W, H9Q,

H10M, and T13W). The mutations among the 10 variants

are extremely similar. In all cases, positions 4 and 13 were

mutated to Trp and positions 9–11 were mainly mutated

to a set of polar amino acids. Note the consistency in position

9 (either Q or R) for these sequences and the dominance of

Asn in position 11. Many combinations of polar amino acids

at these positions are possible and examples of structural

analyses are given in Fig. S3 and Fig. S4. These sequences

are similar to variant E1 in position 4 and contain the same

dominance in positions 9–11 of polar amino acids. Variant

E1 also maintains the native Thr in position 13, while the

10 variants changed this residue to Trp.

Based upon these observations, the sequence selection

model (stage one) was run again, generating sequences

with mutations allowed only in positions 1, 9, 10, and 11.

Positions 9, 10, and 11 were allowed to select from the

hydrophilic amino acids (G,N,Q,H,K,R,D,E,S,T,P), while

position 1 was allowed to select from all amino acids. Trp

was specified in positions 4 and 13 and positions 2–3, 5–8,

and 12 were kept the same as in the native. Two-thousand

sequences were generated in total. Table S2 shows preferred

amino acid mutations (run 2) for each position.

Table 2 shows a selection of sequences from stage one for

which approximate binding affinities were calculated. The

sequences are ranked accordingly.

Upon closer examination of the 16 sequences, the muta-

tions chosen for two of the four positions are rather con-

served. Position 10 exhibited 13 mutations to Asn and two

to Lys. Position 11 exhibited 12 mutations to Gln and three

mutations to Lys. Positions 1 and 9 showed more variability

in the amino acids chosen, but in each case, there was one

dominant amino acid. The dominant amino acid in positions
TABLE 2 Top sequences from stage one with the highest approxim

Sequence

Sequence selection

rank

Approximate binding

affinity rank K*

SQ027 40 1 3.38 � 10þ01

SQ100 159 2 8.45 � 10þ00

SQ087 214 3 4.26 � 10�02

SQ072 166 4 1.31 � 10�02

SQ077 185 5 3.07 � 10�03

SQ040 102 6 4.48 � 10�04

SQ098 238 7 3.46 � 10�04

SQ017 50 8 6.78 � 10�05

SQ025 69 9 4.27 � 10�05

SQ086 210 10 1.10 � 10�05

Variant E1 n/a 11 5.78 � 10�06

SQ023 59 12 6.73 � 10�07

SQ024 65 13 4.35 � 10�07

SQ059 144 14 1.50 � 10�07

SQ055 133 15 2.95 � 10�08

SQ046 112 16 2.06 � 10�08

SQ088 213 17 1.11 � 10�08

Native n/a 18 4.27 � 10�12

Mutations are indicated in boldface.
1 and 9 was Asn, with four of the 16 sequences choosing

that amino acid in each position. However, the two best

sequences show a mutation of Trp in position 1. These

sequences exhibit four Tryptophans. Among the 10 se-

quences that outperformed variant E1, position 10 exhibited

seven mutations to Asn. Position 11 exhibited seven muta-

tions to Gln and two mutations to Lys. Position 1 showed

more dominance for Asn, with three of the 10 sequences

choosing that amino acid, whereas position 9 showed less

dominance for Asn, with only one out of the 10 sequences

choosing that amino acid.

The effect of different docking programs was also exam-

ined and was found to have no effect on the final K* ranking.

Further details can be found in the Supporting Material.
Experimental binding studies of select sequences

Three of the designed sequences were selected for synthesis

and determination of experimental binding using SPR. The

experiments were carried out using the biosensor Biacore

X100 (Biacore, Piscataway, NJ). The native compstatin,

variant E1, SQ027, SQ086, and SQ059 were synthesized

and immobilized on the sensor chip. Table S4 provides the

amino acid sequences that were synthesized. Eight polyeth-

ylene glycol blocks, followed by K-biotin, were added to the

amino acid sequences for Biacore. Seven different concen-

trations of C3 were used during the experiment: 1600 nM,

800 nM, 400 nM, 200 nM, 100 nM, 50 nM, and 25 nM.

The KD values were extracted by simultaneous fitting

of the 0–800 nM data. The 1600 nM were not used because

they showed some evidence of saturation. The data from the

experiments were fit to three models: 1:1 binding model,

two-state reaction model, and a heterogeneous ligand model.

The experimental bindings (KD) are reported in Table 3.
ate binding affinities (Run 2)

Position

1 2 3 4 5 6 7 8 9 10 11 12 13

W C V W Q D W G T N R C W

W C V W Q D W G Q T Q C W

N C V W Q D W G K K Q C W

D C V W Q D W G Q N Q C W

G C V W Q D W G G N Q C W

Q C V W Q D W G T N Q C W

K C V W Q D W G N N K C W

N C V W Q D W G H N K C W

N C V W Q D W G S N Q C W

Q C V W Q D W G Q N Q C W

I C V W Q D W G A H R C T

N C V W Q D W G E N Q C W

S C V W Q D W G N N Q C W

D C V W Q D W G T N K C W

P C V W Q D W G N K Q C W

P C V W Q D W G N N Q C W

G C V W Q D W G K N Q C W

I C V V Q D W G H H R C T

Biophysical Journal 98(10) 2337–2346



TABLE 3 Experimental binding results and stage two ranking

for four compstatin variants and the native compstatin

Sequence

Approximate binding

affinity rank KD (M) Model

Variant E1 11 0.19 � 10�06 Two-state reaction

0.23 � 10�06 1:1 binding

SQ059 14 0.74 � 10�06 Two-state reaction

0.45 � 10�06 1:1 binding

SQ027 1 0.76 � 10�06 Two-state reaction

0.51 � 10�06 1:1 binding

SQ086 10 0.99 � 10�06 Two-state reaction

0.50 � 10�06 1:1 binding

Native 18 1.26 � 10�06 Two-state reaction

0.81 � 10�06 1:1 binding
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Values of KD for using both the two-state reaction model and

the 1:1 binding model are also reported. Based on our selec-

tion criteria for the quality of the fits (Rmax values, c2 values,

and visual inspection of the fits and residuals), the two-state

reaction model is more appropriate to describe the data. In

Table 3, we also include the simplest 1:1 binding model

for comparison.

KD is the inverse of the binding affinity, KA, so a lower

value indicates a better binder. Based upon the experimental

data in Table 3, all four compstatin variant sequences bind

better to C3 than the native compstatin.

Effect of sampling on K* rank

Further computational experiments were performed on

SQ059, SQ086, SQ027, and variant E1 to investigate the

effect of sampling on the K* rank. These higher sampling

runs increased the number of peptides generated using Ro-

settaAbinitio from 1000 to 5000 and the number of docked

conformers generated using RosettaDock from 1000 to

5000. The ranking obtained using the higher sampling is

variant E1 > SQ086 > SQ059 > SQ027. This nearly

matches the experimental ranking, with only SQ086 out of

order.
DISCUSSION

Computational findings

Two de novo protein design frameworks were presented and

applied to the design of novel compstatin variants.

Approximate binding affinity calculations were first

applied to a number of compstatin variants with known rela-

tive activities compared to the native compstatin. Although

most of the sequences were correctly predicted to be better

or worse binders than the native compstatin, two of the

sequences were not correctly predicted. As stated earlier,

this could be due to the fact that the relative activities are

based upon IC50 data, not binding affinity data, and although

there is a correlation between IC50 and binding affinity, they

are not an exact match. The incorrect predictions may also

point out some current limitations in the framework. The
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better we are able to sample the conformation space, the

better we can approximate the binding affinity.

Approximate binding affinities of 10 sequences with high

fold specificities were calculated to see how functional these

well-folded peptides are. Looking at Table 1, one sees that

every one of the designed sequences is ranked higher than

the native, with three of them (variants NCV-2, NCV-10,

and NCV-3) ranking higher than variant E1. However,

sequences with higher fold specificities do not necessarily

have higher approximate binding affinities than those with

lower fold specificities. Therefore, fold specificity calcula-

tions do not necessarily capture how functional a designed

peptide or protein will be, making the K* ranking a good

measure for validating the designed sequences.

Computational studies of the design of compstatin have

elucidated a number of key positions in the sequence that

greatly affect the binding of compstatin to C3c. These studies

identify Trp in positions 4 and 13. This is consistent with the

results found by Morikis et al. (13), indicating that ring

stacking and p-cation interactions may be important for

compstatin activity. Based upon these results, a second

design of compstatin was performed. Stage one generated

2000 sequences, allowing mutations only in positions 1, 9,

10, and 11, and fixing positions 4 and 13 as Trp. Stage

two calculations show that of the 16 sequences presented

all are ranked higher than the native compstatin.

The dependence of the ranking on the docking program

used was investigated by redoing the approximate binding

affinity calculations using another docking program,

HADDOCK. Whether we used RosettaDock or HADDOCK,

we still obtained the same ranking for the sequences, showing

the independence of the overall framework on the particular

docking program used.

Three sequences were selected for synthesis and experi-

mental validation of the binding affinity using Biacore

X100. The experimental results validate that the predicted

sequences are better binders than the native.

Finally, the effect of higher sampling on the three de-

signed sequences selected for experimental validation and

variant E1 was examined, showing that the sampling does

indeed affect the final ranking, and that higher sampling

ranks the sequences closer to the experimental rank. It should

be noted that even though higher sampling leads to an

increase in the computational requirement, it achieves the

goal of elucidating better binders than the native sequence.
Structural analysis of the C3c-bound compstatin
variants

We have performed structural analysis of compstatin vari-

ants with higher predicted binding affinities in complex

with C3c. Fig. S3 shows the best binders from a selected

10 predictions of Table 2, using the structures of the

complexes and the structures of the individual compstatin

variants. The selected 10 predictions correspond to



New Compstatin Variants 2343
approximate binding affinities in the range 1.11 � 10�08 –

4.62 � 10�02 (Table 2). There is a consensus binding site

in the b-chain of C3c, with small positional variability

(Fig. S3 A). The consensus binding site is similar to that of

the E1 variant, observed in the crystal structure (21). Interest-

ingly, there is orientational and conformational variability,

within the consensus binding site, in the selected 10 predic-

tions of compstatin variants. The orientational variability is

shown in Fig. S3, A and B, and the conformational variability

is shown in Fig. S3, C and D. These variabilities are not

unusual in binding. As Boehr and Wright (59) point out,

according to conformational selection hypothesis, before

binding the protein-ligand partners exist as ensembles of

conformations in dynamic equilibria. Conformational selec-

tion involves interactions of low-population and high-energy

conformers (60). Positional, orientational, and conforma-

tional variabilities are in line with this model. Indeed, for a

family of peptides with variable binding affinities, owed to

small sequence differences, it is the physicochemical proper-

ties of the replaced amino acids that contribute to differences

in conformational selection and the equilibrium of the bound

conformation.

Fig. S4 shows a complete analysis of positional, orienta-

tional, and conformational variabilities for the top 10 itera-

tions that led to the selected 10 binders. The relative

topologies of the selected 10 variants with respect to the

binding site in C3c are depicted in Fig. S3 A and their relative

topologies with respect to each other are depicted in Fig. S3,

A and B. The conformational variability includes random coil

conformations (three structures), b-hairpins (two structures),

and helical conformations (five structures) (Fig. S3, C and

D). Fig. S5 provides a Ramachandran plot analysis of the

secondary structures. In the two b-hairpin conformers and

in the random coil region of at least one helical conformer

a Type I b-turn is present in the segment Gln5-Gly8, as

was the case of free compstatin in solution and several of

its analogs in free state (18–20,61). Shifted b-turns are also

present in the three random coil conformers. Shifted or fused

b-turns are also consistent with NMR spectra of free comp-

statin analogs (18,20). A Type I b-turn is present in the struc-

ture of free E1 variant (20) but absent in the structure of the

E1 variant complexed with C3c (21). The helical conforma-

tions are short involving one or two helical turns (Fig. S3 D).

All five helical conformations involve the second-half of the

peptide sequences (Fig. S3 D), which is consistent with the

observation from previous NMR studies that Alanine at posi-

tion 9 introduces helical propensity (13,18,20). Two of the

helical conformations also involve a segment close to the

N-terminal. The helical conformations are stabilized by

backbone-backbone (i, iþ3) and (i, iþ4) hydrogen bonds,

which is consistent with the presence of 310- or a-helices.

There are two 310-helical turns in two structures, one alone

and another in combination with an a-helical turn, the re-

maining being a-helical turns. The b-hairpin conformations

are stabilized by the presence of up to four interstrand back-
bone-backbone hydrogen bonds. Other fortuitous hydrogen

bonds involving backbone or side chains are also present

in some structures.

It is possible that the backbone conformation and orienta-

tion is dictated by the specific intermolecular side-chain

interactions, rather than an intrinsic structural propensity.

This is not unexpected, because free peptides in solution

are flexible and form ensembles of interconverting con-

formers (13,18,20,61–67). Binding occurs through confor-

mational selection of one free peptide conformation, not

necessarily of lowest free energy, followed by induced fit

within the binding site. The latter involves side-chain rear-

rangements for both peptide and target protein, possibly

small backbone motions, and exclusion of solvent molecules

from the binding interface. Conformational interconversion

has been observed before for parent compstatin using molec-

ular dynamics (64), involving the same conformations as

here: coil, b-hairpin, and helical. Actually, the calculated

motional amplitudes for interconversion were very small,

0.1–0.4 Å. The same applied on free energies, which were

~2–11 kcal/mol, corresponding to gaining or losing approx-

imately three hydrogen bonds.

We have performed a side-chain analysis for the selected

10 compstatin variants in search for dominant sidechain-

sidechain intra- and intermolecular interactions that may sta-

bilize internally the peptides structures and the peptide-C3c

complexes. We focused first on the three Tryptophans, which

represent a novel finding of this article (to our knowledge),

and we extended our analysis to all side chains. Fig. S6 shows

the binding sites from the best binders of the selected 10

compstatin variants (Table 2), focusing on interactions of

Trp4, Trp7, and Trp13 with C3c amino acids within 3.5 Å.

A complete analysis, not only of the three Tryptophans but

also of the other side chains within 5 Å, is given in Table

S5. The choice of 3.5 Å and 5 Å was to identify salt bridges

or medium-range ionic interactions. Multiple interactions

are present within 5 Å, involving hydrophobic contacts, inter-

actions between the Tryptophan ring p-electron system and

positive or negative charges of basic or acidic C3c side chains,

and hydrogen bonds. Although there are no obvious

consensus side-chain contacts, there are compensatory effects

involving the three Tryptophans. For example, when one

Tryptophan does not participate or has reduced contacts

with C3c, another Tryptophan has increased contacts with

C3c. This type of compensation may explain the slight varia-

tion of the consensus binding site and the orientational and

structural variability of the selected 10 compstatin variants.

The role of Trp4 is variable and depends on the peptide

sequence and the optimal physicochemical contacts it makes

with C3c. These involve hydrophobic clustering against

C3c amino acids and occasionally hydrogen-bonding and

p-cation interactions. The structural analysis of Fig. S3 and

Fig. S4 suggests a wealth of possible physicochemical inter-

actions, depending on the specific peptide sequences, secon-

dary and tertiary structures, and side-chain conformations.
Biophysical Journal 98(10) 2337–2346
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This is expected, given that the specifics of the sequence are

responsible for binding variability.

Table S6 presents an intermolecular hydrogen-bond

analysis. There are two-to-five intermolecular hydrogen

bonds per compstatin variant-C3c complex, which is compa-

rable to the five intermolecular hydrogen bonds in the E1

variant (PDB code: 2QKI (21)), calculated with the same

hydrogen-bond definition criteria (Table S6). Persistent

hydrogen bonds throughout our analysis of the selected

10 binders involve Trp4 (five structures and E1 variant)

and amino acid at position 1 (four structures and E1 variant).

Hydrogen bonds involving the side chain of Trp13 are

observed in two structures. It should be noted that Trp7

does not participate in hydrogen-bonding in our analysis,

although it shows a hydrogen bond in the E1 variant. Over-

all, our analysis shows 20 intermolecular hydrogen bonds

involving compstatin variant side chains and 12 involving

backbone, with backbone or side-chain partners in C3c.

Persistent amino acids of interaction on the C3c side are

Arg455 and Arg458 (five structures each).

Fig. S7 presents an analysis of intramolecular side-chain

conformational variability and intramolecular side-chain

contacts.

Overall, our data suggest that there is neither fixed confor-

mation nor fixed lock-and-key binding site-peptide complex.

This may be indicative of weak binding. Weak binding may

be supported by the absence of a C3c binding cavity and by

the fact that only 40% of the surface of the E1 variant is

buried in the crystal structure (21). According to experi-

mental data, the binding of compstatin to C3c is much

weaker than to C3b and C3 (3). For example, the binding

of parent compstatin to C3c was found to be 74-fold lower

than to C3 and the binding mechanism was proposed to be

different based on experimental data (i.e., involving biphasic

binding and local conformational changes (3)). A structural

analysis of the best binders of Table 1 demonstrates two

docking hits with alternative binding sites, but the majority

of the variants bind within the consensus binding site

(Fig. S8). Although hits with nonsignificant statistical

meaning are not unusual in docking studies, the possibility

of alternative binding sites may not be excluded. The pres-

ence of active analogs with conformational and orientational

variability and compensatory binding effects owed to the

presence of the three Tryptophans may be the novelty of

our data. This type of variability cannot be identified using

static crystallographic structures.
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